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Abshact. The integro-differential equations which describe diffusion of the hadronic com- 
ponent in the atmosphere are exactly solved by means of the successive approximation 
method. The numbers of muons and neutrinos produced are derived from the hadron 
fluxes obtained as the solution of the above-mentioned equations. The primary msmic ray 
spectrum used in our calculation is presented in a general form G(E). 

1. Introduction 

Several authors have studied analytically the diffusion equations of hadrons in the 
atmosphere. Ohsawa [l]  solved these equations applying a Laplace transformation for 
the depth and a MeUin transformation for the energy. Mackewon, Sidhanta and others 
121 solved these equations applying only the Mellin transformation on the variable E 
(energy). 

If we use the method of Merlin’s transform we obtain a red solution represented 
by a contour integral in the complex domain and, in a few particular cases, this integral 
can be evaluated exactly; in the general case, however, we must use some approximate 
method to estimate it, for example, the saddle point method. 

In this paper we used the successive approximation method to solve these diffusion 
equations with a boundary condition, N ( 0 ,  E ) = G ( E ) ,  where G ( E )  is a continuous, 
positive and bounded function, representing the primary cosmic ray energy spectrum. 

We obtain the differential fluxes of hadrons, muons and neutrinos in an exact and 
compact form, and for the particular case N ( 0 ,  E ) = N O E - ( Y C ‘ )  our solutions result in 
the generally used expressions. 

2. Nucleon diffusion equation in the atmosphere 

The diffusion of nucleons in the atmosphere can be represented by the one-dimensional 
integro-differential equations 
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where N(x,  E )  is the differential nucleon flux at depth x and at energies between E and 
E+&, and A is the nucleon interaction mean free path in the atmosphere. E', E are 
respectively the primary and secondary nucleon energy,f(E, E')  are the energy distribu- 
tions of the secondary nucleons. 

These functions are homogeneous of order (-1), because we assume the scaling 
hypothesis, so that the equations (2.1) take the form 

N M PorfeNa et ai 

with the boundary condition 

N( 0, E )  = G ( E )  

where G ( E )  dE is the differential energy spectrum of the nucleons at the top of the 
atmosphere. This function is supposed to be continuous, positive and bounded 
( G ( E ) S M )  in the interval O<E,,,i.QE<co. The existence of the integral Jz G(E)  dE, for E>E,k, must also be stated because it represents the primary integral 
spectrum. 

y(x, E ) ,  so that the equation (2.2) and the respective 
initial condition become 

Let us put N(x,  E )  

with y(0, E ) = G ( E ) .  
Now we make the following successive approximations 

(2.3) 

(2.4) 

So, we obtain successively 

(2.5) 

The uniform convergence of the solution (2.5) is ensured if the integral 
J i f ( q )  dq/q exists. So, the nucleon flux at the depth x and at the energy in the interval 
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E to E+dE is 

3. Diffusion equation for secondary hadrons in the atmosphere 

The diffusion of the secondary particles in (where m may represent R*, K*, Do, etc.) 
in the atmosphere can be described by the one-dimensional differential equation 

with the boundaly condition 

M(0, E )  = O  

b is the decay constant of the secondary particle, M, in the atmosphere. P:(x, E )  is the 
rate of production of secondary particles m originated by the nucleon-air nuclei inter- 
actions, with energy between E and E + d E  at the depth x. PiE(x, E )  is the similar rate 
for m-air nuclei interactions. They are given by the expressions 

with &,=interaction mean free path of the meson m in the atmosphere.f,(E, E') and 
f;,,(E, E') are the energy distributions of the secondary particles m originated by the 
interactions N-air nuclei, and m-air nuclei, respectively. 

If we assume the scaling hypothesis, the equation (3.1), with the expression (3.2), 
takes the form 

Let us put 

M ( x ,  E )  =x-b'Ey(x, E )  

and define the operator 2 :  
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So, the equation (3.3) and the respective initial condition become 

H M PorteNa et a1 

and 

y(0, E )  =o. 
The term 2 y ( x ,  E )  is unknown, and to solve the equation (3.6) we will make the 

following successive approximations. Initially we obtain the approximation of zero 
order, yo(x, E ) ,  where we do not include the secondgeneration of secondary particles 
m. After this we put, in the equation (3.6), the term Ayo(& E )  at the place of the exact 
term Ay(x, E). We obtain, then, the first estimate for the contribution of the second 
generation of m-particles to the total flux. 

Following up, we make the successive assessment of the contribution of the 3rd, 
4th. .  . nth generations to the total flux. 

This procedure is represented by the following recurrence equations 

where 

(3.8) 

The solutions to the system of linear equations must satisfy the following boundary 
condition 

y.(O,E)=O n=O,1,2 ,.... 
The functions P.(x, E )  and F,(x, E ) ,  (n=O, 1,2 .  . . ) must be continuous in the 

domain c = [ O < x < X ;  E,,,in<E<Emax], withEmi.>O Emax>&!" andx>O. This is satis- 
fied when: 

(a) G(E)  is a continuous and limited function in the interval I=[Emi., co), Emi.>O. 
These functions are positive because they represent the primary energy spectrum, 

(h) f~(q) and J,,(q) are continuous and non-negative functions in the interval 
O<q<1; and 

(c) the integrals JbfN(q) dq/q and JAf.,(q) dq/q exist. 
If these conditions are satisfied, the unique and dosed solution of the systems (3.7) 

and (3.8) is 

y.(x, E)=&&, E )  = P.(t, E) dt (3.9) 
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yo@, E )  = i P o ( x ,  E ) = i P P ; ( x ,  E )  
yn(x, E ) = i ( I + A ^ i +  . . . +(A^i))")Xb'EF$(X, E) .  
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Then 

(3.10) 

As the order of integration here is irrelevant, the nth approximation, y& E ) ,  can be 
put in the following form, 

y.(x,E)=i(I+A^i?+. .. + A ^ " ~ x b ' = P ; ( X , E )  (3.11) 

and if the conditions a, 6 and c cited above are satisfied the series converges uniformly 
to the function 

The differential flux of the secondary particles m at depth x and energy between E 
and E+dEis  

m -.-. 
M(x,  E)= A'~+'x*'~PZ(X, E) .  

1-0 

4. Differential muon and neutrino vertical fluxes 

The production spectrum of muons and neutrinos, d(p or v) ,  is given by 

(3.12) 

where M(x, E') is the differential flux of m-mesons at depth x and energies between E' 
and E'+dE'; E', E are, respectively, the energies of the primary mesons m and of the 
secondary particles d, E is the branching ratio of the mesons m,-fd(E', E )  is the inclusive 
spectrum of secondaries d from decay of particles m with energy E. The values E-, E" 
and the functions fd(E', E )  are obtained from relativistic kinematic considerations of 
two and three-body decays [3]. 

The differential fluxes of leptons d are derived from the production spectrum (4.1); 

D(E, x)= Pd(E, X) W(t, X, E )  dt f: (4.2) 

where W(t, x, E )  is the probability that a lepton d with energy E produced in a depth 
t will survive until the depth x.  

5. Particular case 

If the primary energy spectrum of nucleons is N(0, E )  = N O E - ( y C ' ) ,  the solutions (2.7) 
and (3.12) will take the simplified expressions as follows. 
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5.1. Diferential nucleon flux 
The multiple integrals 

H M Portella et a1 

which appear in the solution (2.7), result in N O E - ( ~ + I ) ( C ~ ~ ) " ,  where 
1 

c N N = S ,  S X ~ )  dtl. 

The nucleon flux, then, becomes 

which is equivalent to the usual expression 
jvcX, E ) = N ~ E - ( Y + I ) ~ - - * / L  

where Lc=A/(l- CNN) is the absorption mean free path of nucleons in the atmosphere. 

5.2. DiTerentialflux of secondary particles 

The production rate of secondaries ,m from the nucleon-air nuclei interaction, is 

Applying the operator d, (n+ 1) times in the expression xblEP;(x, E ) ,  making the 
substitution tI =x- z, and using the properties of iteratives integrals (4), we obtain 

Applying n times the operator d in the last equation, and defining the integrals 

Gmn= v%(v) dtl IoL 
we obtain for the differential flux of secondary particles 

(5.4) 

where L," is the absorption mean free path of the secondaries in in the atmosphere. 
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If E>>b, the expression ( t , / ~ ) ~ ' ~  is approximately 1 and the solution (5.6) takes the 
well known form 

(5.5) 
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